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Noise-driven mechanism for pattern formation
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We extend the mechanism for noise-induced phase transitions proposed by Iban˜eset al. @Phys. Rev. Lett.87,
020601~2001!# to pattern formation phenomena. In contrast with known mechanisms for pure noise-induced
pattern formation, this mechanism isnot driven by a short-time instability amplified by collective effects. The
phenomenon is analyzed by means of a modulated mean field approximation and numerical simulations.
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I. INTRODUCTION

Starting with the seminal work of Horsthemke and Ma
sour on the Verhulst model@1#, noise-induced phenomen
have been a subject of intense interest@2#. Much of the early
work dealt with noise-induced phenomena in ze
dimensional systems. More recently, it has become wid
recognized that the effects of fluctuations on systems wi
large number of degrees of freedom, so-calledspatially ex-
tendedsystems consisting of coupled zero-dimensional s
tems, can be even more striking@3#. First-order@4,5# and
second-order@6–8# noise-induced phase transitions, nois
induced patterns@9–12#, and doubly stochastic resonan
@13# are examples that illustrate the broad interest in the s
ject. The noise intensity is the parameter that controls
creation of order in all these processes. The underly
mechanism that drives the order in these extended system
a noise-induced short-time instability that is amplified
collective effects which do not occur in the absence of c
pling or in the absence of noise. Moreover, as the intensit
the fluctuations increases, a reentrance phenomenon oc
the noise that first drove the system to an ordered state
restores the disorder. It is important to recall that this parti
lar mechanism is in a sense opposite to that responsible
noise-induced phenomena in zero-dimensional systems@6,7#
as these noise-induced phase transitions are observed
when the associated zero-dimensional units exhibit no in
esting noise-induced behavior. It was therefore thought fo
long time that coupling of zero-dimensional units that u
dergo a noise-induced transition would exhibit no interest
collective effects.

However, Iban˜eset al. @14# introduced a class of exactl
solvable models that exhibitbothnoise-induced transitions in
the zero-dimensional caseand noise-induced phase trans
tions in the associated extended system. They stress tha
phase transition arises from an effective equilibrium pot
tial in the steady state and does not require a short-time
stability or any other reference to the short-time behavior
the system. The key ingredient is the combination of rel
ations that rely on field-dependent kinetic coefficients a
the disordering effects of external fluctuations. Furthermo
in this case no reentrance phenomenon occurs: the sy
becomes more ordered with increasing noise intensity.

In this paper, we extend this mechanism to pattern form
1063-651X/2003/67~2!/021113~8!/$20.00 67 0211
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tion. We modify the coupling term of the model in such
way that a morphological instability can appear. We w
show, by means of numerical simulations and analytic cal
lations, that an increasingly ordered spatial structure de
ops as the intensity of the fluctuation increases beyon
critical value. Moreover, we show that for sufficiently hig
noise intensity, there is nonmonotonic behavior as a func
of the coupling that is, there exists an optimal value of t
coupling, for which the ordered structure exhibits maximu
coherence.

The paper is organized as follows. We introduce t
model in Sec. II and explicitly show that no short-time inst
bility can drive pattern formation in this system. In Sec.
and the Appendix we present amodulatedmean-field theory
and the phase diagram of the model obtained from
theory. Numerical simulations that confirm the qualitati
validity of the theoretical results are presented in Sec.
Finally, we summarize our main conclusions in Sec. V

II. THE MODEL

As introduced in Ref.@14#, we consider the following
Langevin dynamics for a space and time dependent sc
field f r(t):

ḟ r5G~f r!@2af r1Lf r#1@G~f r!#
1/2j~r,t !. ~1!

Here, the local force2af arises from a monostable loca
potentialaf2/2 andL stands for the spatial coupling oper
tor. The field-dependent kinetic coefficient is

G~f!5
1

11cf2
. ~2!

The coupling of this kinetic coefficient with the noise favo
fluctuations in the disordered statef50. Both a and c are
positive constants. The noise term is assumed to be Gaus
with zero mean value and correlation function

^j~r,t !j~r8,t8!&52s2d~ t2t8!d~r2r8!, ~3!

where the bracketŝ & denote a statistical average. The ass
ciated stochastic integral is interpreted in the Stratonov
sense@2#.

In the absence of coupling (L50), the model~1! reduces
to a collection of zero-dimensional systems that underg
©2003 The American Physical Society13-1
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noise-induced transition@2#. At small noise intensity, the sta
tionary probability density has a single maximum atf50.
As the noise intensity crosses the critical valuesc

25a/c, the
stationary probability density shows two symmetric maxim
about a minimum atf50. This transition involves no sym
metry breaking since in all cases the average^f r&50. When
sites are coupled diffusively, i.e.,L5D¹2, the model~1!
exhibits a noise-inducedphasetransition @14#. For a given
value of the coupling, as the intensity of the fluctuatio
increases, the system undergoes a second-order phase t
tion that involves spontaneous symmetry breaking, that i
transition from a state witĥf r&50 to one with^f r&Þ0. It
is worth noting that when the coupling strength parameteD
goes to infinity, the location of that transition point is th
same as in a zero-dimensional ensemble,sc

25a/c @14#, and
that the symmetry breaking in the coupled system can in
case be understood in terms of the dynamics associated
the effective potential in the zero-dimensional case.

We show herein that more complex structural changes
be obtained by modifying the coupling termL. In particular,
pattern formation phenomena occur when the system de
ops a morphological instability, that is, when a Fourier mo
of wave vectork other thank50 becomes unstable@15#.
Drawing parallels with previous literature on noise-induc
phenomena@9–12#, we consider a Swift-Hohenberg cou
pling, that is@16#,

L52D~k0
21¹2!2. ~4!

The effect of this coupling can be deduced by applyingL to
a plane waveeik•r,

Leik•r5v~k!eik•r, ~5!

where v(k)52D(k0
22k2)2 is the ~continuous! dispersion

relation ~we use bold for vectorial quantities and italic fo
their magnitudes!. Thus, the largest eigenvalues,v(k)50,
are those associated with Fourier modes of wave num
magnitudek5k0. We will see below that this behavior lead
to a morphological instability in the presence of noise. W
stress that a morphological instability is a key ingredient
the pattern formation mechanism, but the specific functio
form of the coupling term is not.

In the following two sections we show in detail that o
model leads to a noise-induced phase transition to patte
states. We end this section by showing explicitly that
transition is not caused by short-time instabilities@9–12#.
The relevant short-time evolution equation for the model c
be obtained by averaging Eq.~1! and expanding for smallf r
around the average value^f r&50:

ḟ r5~2a2s2c1L!f r . ~6!

Writing f r(t) as a sum~in an infinite system as an integra!
over Fourier modes,

f r~ t !5(
k

f̃k~ t !eik•r, ~7!

and integrating, we obtain
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f r~ t !5(
k

f̃kexp$@2a2s2c1v~k!#t1 ik•r%. ~8!

Sincev(k)<0, all modes decay and there is no short-tim
instability.

III. MODULATED MEAN-FIELD THEORY

To find the phase diagram for our noisy spatially extend
system, we introduce amodulatedmean-field theory. In order
to implement this theory and, in particular, to calculate t
effect of the coupling operatorL in the mean-field context
we need to explicitly distinguish different locationsr and r8
in a way that requires discretization of the system. Sin
numerical simulations also involve discretization, this proc
dure does not interfere with the comparisons of theoret
and numerical results. With the understanding of the act
of the translation operator

expS dx
]

]xD f ~x!5 f ~x1dx!, ~9!

it is straightforward to deduce a discrete version of the Sw
Hohenberg coupling operator,

L52DFk0
21S 2

DxD 2

(
i 51

d

sinh2S Dx

2

]

]xi
D G2

, ~10!

whered stands for the spatial dimension,Dx for the lattice
spacing, and]/]xi indicates a partial derivative with respe
the i th component of the position vector r
5(x1 ,x2 , . . . ,xi , . . . ,xd). As in the continuous case, th
discrete dispersion relation can be obtained by applying
operator~10! to a plane waveeik•r, to obtain

v~k!52DFk0
22S 2

DxD 2

(
i 51

d

sin2S Dx

2
ki D G2

. ~11!

Here, ki denotes componenti of the wave vectork
5(k1 ,k2 , . . . ,ki , . . . ,kd).

Note that as in the continuous problem,v(k) is nonposi-
tive for any value ofk, but that in the discrete case it depen
not only on the magnitude but also on the direction ofk. Of
particular importance in our subsequent analysis are th
modes for whichv(k)50. In the continuum, these are th
modes withk5k0, which are all those that lie on a continu
ous hypersurface in reciprocal space of radiusk0 around the
origin. In the discretized system the magnitudesk* of the
most unstable modes are shifted fromk0 and depend on di-
rection, as can be seen by solving Eq.~11!. The longest vec-
tors such thatv(k* )50 lie along the Cartesian directions
e.g. (k* ,0,0, . . . ,0) andhave magnitude

maxk* 5
2

Dx
arc sinS k0Dx

2 D . ~12!

The shortest lie along a reciprocal space diagonal, e
(k* ,k* ,k* , . . . ,k* )/Ad, and have magnitude
3-2
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mink* 5
2Ad

Dx
arc sinS k0Dx

2Ad
D . ~13!

If k0Dx<1 ~which it always will be in our analysis!, then the
difference between these two values is smaller than 3%. I
therefore, only a mild approximation to neglect the dire
tional dependence of the solutions ofv(k* )50 and focus on
the magnitude,v(k* )50.

To establish the existence of patterns of a character
length scale, we seek a spatially periodic structure define
wave vectorsk, whose magnitudek, is associated with the
inverse of this length scale. As we shall see, the appropr
wave vectors to focus on are precisely those of magnit
k* , that is, those for whichv(k)50. As is customary in
mean field theories, we make an ansatz about the behavi
the field at sitesr8 other than the focus pointr which are
coupled to it by the operatorL, one that incorporates a
appropriate spatial modulation:

f r85A~k* !(
$k* %

cos@k•~r2r8!#, ~14!

where the sum~or, in an infinite system, the integral! is over
wave vectors of magnitudek* . Our ansatz thus also inco
porates the assumption that all modes of this magnitude
tribute with equal~direction-independent! weight A(k* ). In
the Appendix, we present details of some of the steps
show the action of the coupling operator on this ansatz
arrive at the result

Lf r5D1@n~k* !A~k* !2f r#, ~15!

where

n~k* !5
dpd/2

G~d/211! S Nk*

2p D d21

~16!

is the number of modes of magnitudek* , and

D15DF S 2d

~Dx!2
2k0

2D 2

1
2d

~Dx!4G . ~17!

Substitution in Eq.~1! then leads to an equation that depen
only on a generic site indexr that can simply be dropped:

ḟ5G~f!$2af1D1~k* !@n~k* !A~k* !2f#%

1@G~f!#1/2j~ t !, ~18!

and j(t) is zero-centered Gaussian noised-correlated in
time,

^j~ t !j~ t8!&5
2s2

~Dx!d
d~ t2t8!. ~19!

Here, we have incorporated the fact that the continuum d
function d(r2r8) has been replaced in the usual way by
ratio that contains the Kronecker delta and the lattice sp
ing, d r,r8 /(Dx)2. Henceforth, we setDx51.
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The amplitudeA(k* ) is the mean field quantity that mus
be chosen self-consistently to complete the solution of
problem. The stationary probability density for the stochas
process~15! is

r„f;A~k* !…

5N @n~k* !A~k* !#~11cf2!1/2

3expH 2
1

s2 F1

2
~a1D1!f22D1n~k* !A~k* !fG J ,

~20!

where the normalization constantN @n(k* )A(k* )# depends
on the amplitude and must therefore be carefully included
the self-consistent solution. Self-consistency is then emb
ied in the assumption thatn(k* )A(k* ) is the average value
of the field at any point in space, i.e., in the requirement t

n~k* !A~k* !5E
2`

`

fr„f;A~k* !…df, ~21!

which is appropriate either ifA(k* )50 and the distribution
is symmetric inf, or if n(k* )A(k* ) is much larger than the
~appropriately phased! combined amplitudes of all the othe
modes. The latter occurs if there is an instability that leads
the formation of a pattern with wave numbers of magnitu
k* .

Since r(f;0)5r(2f;0), it follows that A(k* )50 is
always a solution. To find other solutions, we expand
integral on the right side of Eq.~21! aroundA(k* )50,

E
2`

`

fr„f;A~k* !…df5bA~k* !1O„A 3~k* !…, ~22!

where

b5E
2`

`

f
]r~f;A~k* !!

]A~k* !
U

A(k* )50

df. ~23!

It follows that self-consistent solutions different from
A(k* )50 are possible, and that the loci that indicate t
appearance of these solutions satisfyb5n(k* ), that is,

D1

s2E2`

`

f2 r~f;0!df51. ~24!

The latter condition, which determines the phase diagram
the model, can also be obtained by geometrical argum
@3,17#. Equation~24! can be expressed in the following a
gebraic form:
3-3
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15

D1K1S a1D1

4cs2 D e(a1D1)/4cs2

2s2cApUS 2
1

2
,0,

a1D1

2cs2 D , ~25!

whereU(x,y,z) is the confluent hypergeometric function an
Kn(x) is the Bessel function of the second kind.

The derivation is not complete until we confirm, at lea
within the approximations implemented in our mean fie
approach, that the most unstable modes are indeed tho
magnitudek* , i.e., those for whichv(k)50. This is easily
ascertained as follows. If we consider an ansatz state of
form ~14! but with a differentk, then we would arrive at a
mean field equation containingv(k) explicitly:

ḟ5G~f!$2„a2v~k!…f1De f f~k!@n~k!A~k!2f#%

1@G~f!#1/2j~ t !, ~26!

whereDe f f(k)5D11v(k) @cf. Eq. ~A7!#; here the assump
tion has again been made thatv(k) is well approximated by
v(k). Note that ifv(k)50 we recover Eq.~18!. If we now
follow the same steps leading to the condition~25! which
marks the boundary of pattern formation, we find that
only modification is that the very firstD1 in the numerator is
now replaced withDe f f(k). The other occurrences ofD1 are
not affected becauseD1 anda are each shifted in such a wa
that their sum remains unchanged. SinceDe f f(k),D1 for all
kÞk* , it follows that in order to satisfy Eq.~25! the noise
intensity has to begreater for otherk. In other words, while
modes other than those of magnitudek* may become un-
stable, they first do so at higher values of the noise inten
Conversely, for a given noise intensity, the coupling must
stronger to produce an instability of other wave vecto
Thus, as the noise intensity is increased from zero for a gi
coupling, or the coupling is increased from zero for a giv
noise intensity beyondsc

2 , the first and hence strongest in
stability occurs atk* .

Figure 1 shows the phase diagram of the model in
space (s2,D) obtained from the numerical solution of Eq
~25! in two dimensions withDx51, a51, c53, and k0
51, which leads tok* '1.035. Note that asD goes to in-
finity, the transition line moves to the value of the noi
intensity where the zero-dimensional stationary probabi
density becomes bimodal,sc

251/3.
Since Eq.~1! satisfies the inversion symmetryf↔2f,

roll-shaped patterns are likely@15#. In order to characterize
the structure that develops, we use as an order paramete
total power spectrum at the most unstable modes,

S~k* !5 (
$k* %

f̃k* f̃2k* ~27!

where, as before,f̃k stands for the Fourier transform of th
field f r and the sum is over all modes of magnitudek* . This
parameter characterizes the transition from a laminar reg
02111
t

of

he

e

y.
e
.
n

n

e

y

the

e

~homogeneous! to a convective regime~roll-like patterns!
that we expect to obtain here. Using our self-consistent
lution then gives, in the modified mean-field approximatio
the appropriately normalized relation

S~k* !5n~k* !A 2~k* !. ~28!

In Fig. 1, we also present several contour lines indicating
value ofS(k* ). Note that for a given value of the couplin
D, as noise intensity increases, the order parameterS(k* )
also increases, that is, the stronger the noise, the larger i
amplitude of structures associated with wave vector mag
tudek* . Note also that for sufficiently large noise intensit
for a given value ofs2 there is a nonmonotonic behavior o
S(k* ) as a function of the coupling strength, indicating th
there exists a value of the coupling for which the structu
associated withk* exhibit maximum coherence. At the sam
time, the possible instability of other modes neark* may
affect the actual physical appearance of the system, so
these effects may not be visually unequivocal.

Finally, we note that it is common in pattern formatio
discussions to use the so-calledflux of convective heat

J5
1

Nd (
r

f r
25(

k
f̃kf̃2k ~29!

as an order parameter. If our ansatz state were exact, the

FIG. 1. Phase diagram of the model obtained from the mo
lated mean field theory. The wide solid line indicates the transit
loci ~25! in (D,s2) space fork051 (k* '1.035), a51, and c
53. Inside the ordered region where patterns develop we h
indicated some contour lines labeled by the value of the order
rameterS(k* ) ~see text!. Note that as the coupling goes to infinit
the transition line tends to the value of the noise intensity where
zero-dimensional system undergoes a noise-induced transitionsc

2

51/3.
3-4
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the patterned state the two would be identical,J5S(k* ).
Differences point to the presence of other unstable mode

IV. NUMERICAL SIMULATIONS

In order to check the analytical predictions of the mo
fied field theory, we perform numerical simulations of E
~1! on a two-dimensional square lattice of 64364 cells and
apply Dirichlet-Neumann boundary conditions common
used in studies of fluids, namely, the field and the norm
component of the gradient are zero at the boundaries.
relevant parameters have the following values in our simu
tions: mesh sizeDx51 that gives the system length sca
L5NDx564, time stepDt50.001, k051, which leads to
k* '1.035 and anaspect ratioL5k* L/2p;10. The other
parameters of the model are again taken asa51 andc53.
Using these values, the onset of bistability of the station
one-site potential occurs atsc

25a/c51/3. We expect the
transition to pattern formation to occur for noise intensit
nearsc

2 if the coupling is sufficiently strong. According t
the mean field phase diagram Fig. 1,D55 is sufficiently
large. We use this value of the coupling in subsequent ca
lations and figures. Although the initial conditions do n
matter for the final outcome, the outcome is reached m
quickly if we start from a targetlike pattern of rings of widt
k* . We have ascertained that other initial conditions, for
ample, a random initial condition, reach the stationary s
albeit in a longer time.

We have numerically computed the order parameter
several noise intensities, and the results are shown in Fi
The order parameter is very small for low noise intensit
until the critical noise intensity is reached, after which t
order parameter grows linearly withs2. Our simulations

FIG. 2. Order parameter as a function of the noise inten
obtained from numerical simulations~squares! for a51, c53, D
55, andk051. The error bars are indicated. The dashed line in
cates the linear interpolation of the numerical data used to locate
transition point,s0

250.560.1. The points labeledA (s250.1), B
(s252), andC (s255) correspond to the spatial structures sho
in Fig. 3. Inset: mean-field result, with transition point ats0

2

50.349 5561025.
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lead to a critical values0
250.560.1. The mean field result

also shown in the figure, predicts the ordering transition
occur at s0

250.349 5561025 and also captures the linea
transcritical behavior ofS(k* ) with s2, but predicts a slower
growth of the order parameter with noise intensity than
numerical simulations. Nevertheless, the mean-field the
clearly captures the full qualitative behavior of the syste
especially near the transition point.

We have also computed the flux according to Eq.~29! for
all the cases for which we have presented the order par

y

i-
he

FIG. 3. Density plots of the stationary field associated with
pointsA ~first panel!, B ~second!, andC ~third! of Fig. 2. Note that
as predicted, for a constant value of the coupling, a pattern deve
as the intensity of the noise increases.
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eter. We find that both predict essentially the same crit
noise value for the appearance of patterns, and that for
simulation parameters, the flux is fairly consistently twice
large as the order parameter~because of the contributions o
other modes to the former!. This consistency would indicat
that even well beyond the transition point, the most unsta
modes dominate the flux.

The spatial pattern that emerges ass2 increases is illus-
trated in Fig. 3 using density plots of the stationary value
the field for the noise intensities labeledA, B, andC in Fig.
2: sA

250.1 ~weak noise, no pattern!, sB
252 ~rolls are vis-

ible!, andsC
2 55 ~strong noise, distinctive pattern!.

In order to ascertain the nonmonotonic behavior of
order parameter with coupling strength at a given noise
tensity, in Fig. 4 we present the results for a fixed no
intensity s256. Simulations are indicated by squares, a
the inset shows the results predicted by the theory. W
there are again quantitative differences, the qualitative ag
ment is evident: both curves show a clear nonmonotonic
havior. The density plots of the field associated with poi
A, B, andC in Fig. 5 confirm this behavior. Of course even
the amplitudes of wave vectors of magnitudek* are decreas-
ing, the amplitudes of other nearby wave vectors may
growing. Therefore, while the lightening of patternC on the
gray scale reflects the decrease in the order parameter,
sual perception of some loss of distinctness could be du
an admixture of other wave vectors.

V. CONCLUSIONS

We have shown by means of a modulated mean-field
proximation and numerical simulations that the mechan
for noise-induced phase transitions introduced by Iba˜es
et al. @14# can be extended to pattern formation phenome
In contrast with previous work on noise-induced patterns,

FIG. 4. Order parameter as a function of the coupling stren
obtained from numerical simulations~squares! for a51, c53, s2

56, andk051. The error bars are indicated; the dashed line i
guide for the eye. The points labeledA (D50, uncoupled system!,
B (D514), andC (D560) correspond to the spatial structur
shown in Fig. 5. Inset: mean-field result.
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short-time instability is required to generate these spa
structures. As a consequence, this transition is indepen
of the noise interpretation, as has been shown for no

induced phase transitions@18#. For example, for the Itoˆ in-
terpretation we have checked numerically that this mo
exhibits the same noise-induced patterns, but at a lower c
cal noise intensity. Furthermore, no reentrance phenome
occurs as the fluctuations grow in intensity. Indeed, in o
system, stronger noise leads to increasingly ordered st

h

a

FIG. 5. Density plots of the stationary field associated with
pointsA ~first panel!, B ~second!, andC ~third! of Fig. 4. Note that,
as predicted, for a constant value of the noise, a pattern develo
the coupling increases but then becomes less distinct as the
pling increases further.
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tures. The mean-field theory has allowed us to characte
the model by computing its phase diagram. We have a
performed numerical simulations that confirm the qualitat
validity of the theoretical analysis. We find that as the inte
sity of the fluctuations increases, a rotationally symme
roll-shaped pattern appears. The pattern is characterize
the most unstable modes of the system, those with w
vector of a magnitudek5k* that is explicitly predicted by
the mean field analysis. Both the theoretical and numer
analyses show that as the coupling between sites goe
infinity, the transition to pattern formation occurs at the sa
point where the zero-dimensional system presents a no
induced transition. We have also shown that for sufficien
strong noise intensity, the order parameter for the system
nonmonotonic as a function of the coupling strength. Th
for sufficiently strong noise, there exists an optimal value
the coupling such that the patterns of characteristic s
2p/k* are maximally coherent.
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APPENDIX: IMPLEMENTATION OF THE MODIFIED
MEAN-FIELD THEORY

We begin by exhibiting in some detail the dependen
associated with the ansatz field~14! and the action ofL on it.
For example, for anr8 that is m lattice sites away fromr
5(x1 ,x2 , . . . ,xd) in the directionj, the ansatz reads

f~x1 ,x2 , . . . ,xj1mDx, . . . ,xd!5 (
$k* %

A~k* !cos~mDxkj !.

~A1!

For anr8 that is in the immediate positive diagonal locatio
away fromr we have

f~x11Dx,x21Dx, . . . ,xj1Dx, . . . ,xd1Dx!

5 (
$k* %

A~k* !cos@Dx~k11k21•••1kd!#. ~A2!

Next, to apply the discrete version~10! of L we
must elucidate the effect of the operato
@( i 51

d sinh2
„(Dx/2)(]/]xi)…#

n on the field f r for n51,2.
With n51, we use the relation 2 sinh2(y/2)5@cosh(y)21#
and note that
02111
ze
o

e
-
c
by

ve

al
to

e
e-

y
is
,
f
e

-

s

(
i 51

d

coshS Dx
]

]xi
Df r

5
1

2
@f~x11Dx,x2 , . . . ,xj , . . . ,xd!

1f~x12Dx,x2 , . . . ,xj , . . . ,xd!1•••

1f~x1 ,x2 , . . . ,xj1Dx, . . . ,xd!

1f~x1 ,x2 , . . . ,xj2Dx, . . . ,xd!1•••

1f~x1 ,x2 , . . . ,xj , . . . ,xd1Dx!

1f~x1 ,x2 , . . . ,xj , . . . ,xd2Dx!#. ~A3!

By using Eq.~A1! in this last equation, we obtain

(
i 51

d

coshS Dx
]

]xi
Df r5 (

$k* %

A~k* !(
i 51

d

cos~kiDx!.

~A4!

As for n52, we note that 4 sinh2(y/2)sinh2(z/2)5@cosh(y)
21#@cosh(z)21# and, in turn, cosh(y)cosh(z)51

2@cosh(y1z)
1cosh(y2z)#. The latter combination leads to contribution
that involve both forward and backward translations in d
ferent spatial directions. This is easily visualized by noti
explicitly that

F(
i 51

d

coshS Dx
]

]xi
D G2

5
1

2 H (
i , j 51

d

coshFDxS ]

]xi
1

]

]xj
D G

1coshFDxS ]

]xi
2

]

]xj
D G J . ~A5!

Notice that for thed cases wherei 5 j , the second term on
the right hand side leaves the field at the original siter. The
field at the original site is not represented by the ansatz
sumption, and therefore we must subtract thed ‘‘spurious’’
terms produced by the ansatz state and addd times the field
f r . This procedure leads to

F(
i 51

d

coshS Dx
]

]xi
D G2

f r5
d

2
f r1 (

$k* %

A~k* !

3F S (
i 51

d

cos~kiDx!D 2

2
d

2G .

~A6!

Note that we have taken advantage of the directional ins
sitivity of k* .

Use of Eqs.~A4! and ~A6! in Eq. ~10! then leads to the
following approximation for the term containing the Swif
Hohenberg coupling operator:
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Lf r5D1S (
$k* %

A~k* !2f rD 1 (
$k* %

A~k* !v~k* !

5D1S (
$k* %

A~k* !2f rD , ~A7!

where the last term in the first line vanishes becausev(k* )
50, and where

D15DF S 2d

Dx2
2k0

2D 2

1
2d

Dx4G .

Finally, since the summand in Eq.~A7! is independent of the
direction of thek* , the sums simply give the number o
terms in the sum~or the appropriate integral form! times the
summand. Simulations always involve afinite system ofNd

sites i.e., of volume (NDx)d, so that the allowed mode
E

e

a

an

o,

02111
themselves form a discrete set, with each component s
rated from the next one by an intervalDk52p/NDx. One
way to count the number of modesn(k* ) in the sum is to
construct a ring of radius mink* @which we shall simply call
k* following the discussion surrounding Eqs.~12! and~13!#
of thicknessDk[2p/NDx, and to consider all the mode
that lie in this ring. We can then estimate this number
calculating the number of cells of volume (2p/NDx)d in the
ring:

n~k* !5
dpd/2

G~d/211! S Nk*

2p D d21

. ~A8!

Although variations in the particular way of counting a
possible, for sufficiently largeN the differences are small
Thus, we finally arrive at the mean-field approximation

Lf r5D1@n~k* !A~k* !2f r#. ~A9!
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v.

s.

A.

d

@1# W. Horsthemke and M. Malek Mansour, Z. Phys. B24, 307
~1976!.

@2# W. Horsthemke and R. Lefever,Noise-Induced Transitions
~Springer, Berlin, 1984!.

@3# J. Garcı´a-Ojalvo and J.M. Sancho,Noise in Spatially Extended
Systems~Springer, New York, 1999!.

@4# R. Müller, K. Lippert, A. Kühnel, and U. Behn, Phys. Rev.
56, 2658~1997!.
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@14# M. Ibañes, J. Garcı´a-Ojalvo, R. Toral, and J.M. Sancho, Phy
Rev. Lett.87, 020601~2001!.

@15# M.C. Cross and P.C. Hohenberg, Rev. Mod. Phys.65, 851
~1993!.

@16# J. Swift and P.C. Hohenberg, Phys. Rev. A15, 319 ~1977!.
@17# C. Van den Broeck, J.M.R. Parrondo, J. Armero, and

Hernández-Machado, Phys. Rev. E49, 2639~1994!.
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