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Noise-driven mechanism for pattern formation
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We extend the mechanism for noise-induced phase transitions proposed égdbah[Phys. Rev. Lett87,
020601(2001)] to pattern formation phenomena. In contrast with known mechanisms for pure noise-induced
pattern formation, this mechanismrist driven by a short-time instability amplified by collective effects. The
phenomenon is analyzed by means of a modulated mean field approximation and numerical simulations.
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[. INTRODUCTION tion. We modify the coupling term of the model in such a
way that a morphological instability can appear. We will
Starting with the seminal work of Horsthemke and Man-show, by means of numerical simulations and analytic calcu-
sour on the Verhulst modgll], noise-induced phenomena lations, that an increasingly ordered spatial structure devel-
have been a subject of intense intef@3t Much of the early 0ps as the intensity of the fluctuation increases beyond a
Work dea|t W|th noise_induced phenomena in Zero_critical Value. Moreover, we ShOW that for SUfﬁCientIy hlgh
dimensional systems. More recently, it has become WideIW'Oise intensity, there is nonmonotonic behavior as a function
recognized that the effects of fluctuations on systems with &f the coupling that is, there exists an optimal value of the
large number of degrees of freedom, so-cakpatially ex- coupling, for which the ordered structure exhibits maximum
tendedsystems consisting of coupled zero-dimensional syscoherence.
tems, can be even more striking]. First-order[4,5] and The paper is organized as follows. We introduce the
Second_ordeiG_s] noise-induced phase transitionS, noise_model in Sec. Il and eXp|ICIt|y show that no short-time insta-
induced pattern§9—12], and doubly stochastic resonance bility can drive pattern formation in this system. In Sec. Il
[13] are examples that illustrate the broad interest in the supand the Appendix we presentaodulatedmean-field theory
ject. The noise intensity is the parameter that controls th@nd the phase diagram of the model obtained from this
creation of order in all these processes. The underlyingheory. Numerical simulations that confirm the qualitative
mechanism that drives the order in these extended systemsValidity of the theoretical results are presented in Sec. IV.
a noise-induced short-time instability that is amplified by Finally, we summarize our main conclusions in Sec. V
collective effects which do not occur in the absence of cou-
pling or in the absence of noise. Moreover, as the intensity of Il. THE MODEL
the qu_ctuations_ increases, a reentrance phenomenon 0CCUrS: ag introduced in Ref[14], we consider the following
the noise that_ first drov_e t.he system to an ordered_ State_”OWangevin dynamics for a space and time dependent scalar
restores the disorder. It is important to recall that this particusg|qg b,(1):
lar mechanism is in a sense opposite to that responsible for
noise-induced phenomena in zero-dimensional sysférirs & =T(p)[—ad,+ L ]+[T(P)]2%(r,t). (D)
as these noise-induced phase transitions are observed onl
when the associated zero-dimensional units exhibit no intettlere, the local force-a¢ arises from a monostable local
esting noise-induced behavior. It was therefore thought for #0tentialag?/2 and£ stands for the spatial coupling opera-
long time that coupling of zero-dimensional units that un-tor. The field-dependent kinetic coefficient is
dergo a noise-induced transition would exhibit no interesting
collective effectNS. T'($)
However, lbaeset al.[14] introduced a class of exactly
solvable models that exhildiioth noise-induced transitions in . o - ) )
the zero-dimensional casend noise-induced phase transi- The cogplmg of this _klnetlc coefficient with the noise favors
tions in the associated extended system. They stress that trflgctuations in the disordered stafe=0. Botha andc are
phase transition arises from an effective equilibrium poteniositive constants. The noise term is assum_ed to be Gaussian
tial in the steady state and does not require a short-time in%ith zero mean value and correlation function
stability or any other reference to the short-time behavior of PN o 20kt o
the system. The key ingredient is the combination of relax- (DL, 1)) =207t =t 8(r=1"), ®
ations that rely on field-dependent kinetic coefficients andvhere the bracket§ ) denote a statistical average. The asso-
the disordering effects of external fluctuations. Furthermoregiated stochastic integral is interpreted in the Stratonovich
in this case no reentrance phenomenon occurs: the systesense?2].
becomes more ordered with increasing noise intensity. In the absence of coupling’=0), the model1) reduces
In this paper, we extend this mechanism to pattern formato a collection of zero-dimensional systems that undergo a
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noise-induced transitiof2]. At small noise intensity, the sta- -
tionary probability density has a single maximumdat0. ¢r(t)=; pexp[ —a—o’ct+w(k)Jt+ik-r}.  (8)
As the noise intensity crosses the critical valtfe=a/c, the
stationary probability density shows two symmetric maximagijnce o (k)<0, all modes decay and there is no short-time
about a minimum a$=0. This transition involves no sym- jntapjility.
metry breaking since in all cases the averagg =0. When
sites are coupled diffusively, i.e£=DV?, the model(1)
exhibits a noise-induceghasetransition[14]. For a given
value of the coupling, as the intensity of the fluctuations To find the phase diagram for our noisy spatially extended
increases, the system undergoes a second-order phase traggistem, we introduce modulatednean-field theory. In order
tion that involves spontaneous symmetry breaking, that is, & implement this theory and, in particular, to calculate the
transition from a state witki¢,)=0 to one with(¢,)#0. It effect of the coupling operatof in the mean-field context,
is worth noting that when the coupling strength paramBter we need to explicitly distinguish different locationsandr’
goes to infinity, the location of that transition point is the in a way that requires discretization of the system. Since
same as in a zero-dimensional ensembfesa/c [14], and  numerical simulations also involve discretization, this proce-
that the symmetry breaking in the coupled system can in thadure does not interfere with the comparisons of theoretical
case be understood in terms of the dynamics associated wittnd numerical results. With the understanding of the action
the effective potential in the zero-dimensional case. of the translation operator

We show herein that more complex structural changes can

IIl. MODULATED MEAN-FIELD THEORY

be obtained by modifying the coupling terfh In particular, d B

pattern formation phenomena occur when the system devel- ex 5)(& F(x) =1 (x+ %), ©
ops a morphological instability, that is, when a Fourier mode

of wave vectork other thank=0 becomes unstablgl5]. it is straightforward to deduce a discrete version of the Swift-

Drawing parallels with previous literature on noise-inducedHohenberg coupling operator,
phenomend9-12], we consider a Swift-Hohenberg cou-

ling, that is[16], 23 ?
P o L£=-D|k3+ Ai > sinhz(%i) , (10
L£=-D(kj+V?)?2 (4) x| =1 IX;
The effect of this coupling can be deduced by applythtp ~ Whered stands for the spatial dimensioaix for the lattice
a plane wavee'¥", spacing, and/ dx; indicates a partial derivative with respect
‘ ' the ith component of the position vectorr
Le'kr=w(k)er, (5)  =(X1,X2, ... Xi,...Xq). As in the continuous case, the

2 oo _ . . discrete dispersion relation can be obtained by applying the
where (,!)(k) =— D(ko— k ) is the (Contlnu0u$ d|SperS|0n operator(lo) to a p|ane WaV@Ik'r, to obtain
relation (we use bold for vectorial quantities and italic for

their magnitudes Thus, the largest eigenvaluas(k)=0, 2124 Ax P
are those associated with Fourier modes of wave number w(k)=—-D k(z)—(&) > SirT2<7ki (11
magnitudek=Kky. We will see below that this behavior leads =1

to a morphological |nstqb|llty in th_? presence (_)f noIse. WeHere, ki denotes component of the wave vectork
stress that a morphological instability is a key ingredient Of—(k K K ko)
T 1:K2, o K, oK)

the pattern formation mechanism, but the specific functional Note that as in the continuous problea(k) is nonposi-

form of the coupling term is not, tive for any value ok, but that in the discrete case it depends

In the following two sections we show in detail that our t onlv on the maanitude but also on the directiorkoDf
model leads to a noise-induced phase transition to patternébo y Y

states. We end this section by showing explicitly that theﬁ1 aggggl?gr"\zﬁ%tznie_'% olunr tiibzigﬁsﬂﬂnin?rfsi 2:2 :Egse
transition isnot caused by short-time instabilitig9—12). des withk=K \(eri_h .r Il th th tli, N ntin
The relevant short-time evolution equation for the model ca"odes ~ o ch are ail those that fie on a continu-

; ; ; hypersurface in reciprocal space of radigground the
be obtained by averaging E@.) and expanding for smadp, ous. ) . .
around the average valye,)=0: origin. In the discretized system the magnitud&s of the

most unstable modes are shifted fregnand depend on di-
b =(—a—o2ct L) . 6 rection, as can be seen by solving Etjl). The longest vec-
=l 7 i © tors such thatw(k*)=0 lie along the Cartesian directions,

Writing ¢,(t) as a sunfin an infinite system as an integral €.9- k*,0,0,...,0) andhave magnitude

over Fourier modes,

" 2 _ r( koAx) 12
maxk* =-——arc si .
b= Bve, @ ax 2
The shortest lie along a reciprocal space diagonal, e.g.,
and integrating, we obtain (k* k* k*, ... k*)/{/d, and have magnitude
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2./d KoAX The amplitudeA(k*) is the mean field quantity that must
mink* = Ay &rC Si . (13)  be chosen self-consistently to complete the solution of the
X 2\d problem. The stationary probability density for the stochastic

15 i
If kpAx=<1 (which it always will be in our analysjsthen the process(15) is

difference between these two values is smaller than 3%. It, is

therefore, only a mild approximation to neglect the direc-p(¢;A(k*))

1 1 *\ —

:ﬁgiggeﬁifggggﬁs*?fzt%é solutions@fk*) =0 and focus on = N[n(k*) A(K*)](1+cp?) M2
To establish the existence of patterns of a characteristic 1

length scale, we seek a spatially periodic structure defined by X ex;{ — =(a+Dj)¢?>—Dn(k*)A( k*)¢H ,

wave vectork, whose magnitudd, is associated with the 2

inverse of this length scale. As we shall see, the appropriate (20)

wave vectors to focus on are precisely those of magnitude

k*, that is, those for whichw(k)=0. As is customary in

mean field theories, we make an ansatz about the behavior Bfiere the normalization constaM[n(k*).A(k*)] depends

the field at sites’ other than the focus point which are ~ On the amplitude and must therefore be carefully included in
coupled to it by the operatof, one that incorporates an the self-consistent solution. Self-consistency is then embod-

appropriate spatial modulation: ied in the assumption that(k*).A(k*) is the average value
of the field at any point in space, i.e., in the requirement that

0_2

b =AK*) D, cogk-(r—r")], (14)
{k*}

where the suntor, in an infinite system, the integjak over
wave vectors of magnitudie*. Our ansatz thus also incor-
porates the assumption that all modes of this magnitude CoRghjch is appropriate either ifl(k*)=0 and the distribution
tribute with equal(direction-independentveight A(k*). In s symmetric ing, or if n(k*).A(k*) is much larger than the
the Appendix, we present details of some of the steps thagppropriately phasedtombined amplitudes of all the other
show the action of the coupling operator on this ansatz, tgngdes. The latter occurs if there is an instability that leads to
arrive at the result the formation of a pattern with wave numbers of magnitude
— * * K*.
L =Daln(k*) AK) = ], (15 Since p(4:0)=p(— :0), it follows that A(k*)=0 is

always a solution. To find other solutions, we expand the

nk)AK= [ sp(@iands, @

where ; . .
integral on the right side of Eq21) around.A(k*)=0,
d,n.d/2 N K* d-1
*\ — | —
vk = Franr 277) (16) .
f dp(¢; A(K*))dp=bA(K*)+O(A3K*)), (22
is the number of modes of magnitué&, and -
2
2d 2d
D;=D —kg) + . (a7 Where

(Ax)? (Ax)*

d¢. (23

A(k*)=0

Substitution in Eq(1) then leads to an equation that depends b= f“ ¢f9p(¢:A(k*))

only on a generic site indexthat can simply be dropped: AA(K*)

=T ($){—ag+Dy(kK*)[n(k*) A(k*)— ¢]}
12 It follows that self-consistent solutions different from
+ ()7, (18) A(k*)=0 are possible, and that the loci that indicate the

. " )
and &(t) is zero-centered Gaussian noigecorrelated in appearance of these solutions satisfyn(k™), that s,

time,

2 Daf= , _
(iz)dé(t—t’). (19 UZde’ p(4:0)d¢=1. 24

(EE))=

Here, we have incorporated the fact that the continuum deltd&he latter condition, which determines the phase diagram of
function 6(r—r") has been replaced in the usual way by athe model, can also be obtained by geometrical arguments
ratio that contains the Kronecker delta and the lattice spad-3,17]. Equation(24) can be expressed in the following al-
ing, o /(Ax)?. Henceforth, we seAx=1. gebraic form:

021113-3



PHYSICAL REVIEW E 67, 021113 (2003

BUCETA, et al.
DK, at D;) ela+ Dy)/4ca? E ! E
co i i i _ 2
1= . 5 , (25) 4 s ES(k*)_6X1.0
a+ 1 I 1
202c\ml| - 5,0— | S !
2" " 2¢co? : P
34 ! S(k*)=5x10" |
wherel(x,y,z) is the confluent hypergeometric function and E ! E
K,(x) is the Bessel function of the second kind. D : i 5 ;'
The derivation is not complete until we confirm, at least 24 S(k¥) =3x10% | ;
within the approximations implemented in our mean field : !
approach, that the most unstable modes are indeed those : i ; :
magnitudek*, i.e., those for whichw(k)=0. This is easily 14 ! ! !
ascertained as follows. If we consider an ansatz state of th : ; ; !
form (14) but with a differentk, then we would arrive at a 1 S S
mean field equation containing(k) explicitly: 0 i . : : : — . :::
0 & 1 2 3 4
: 2
¢=T(){~(@—w(k))p+Degi(K)[n(k)A(K) — ¢]} c
+[T () 1M2%(1), 26
[T(A)]7e() 26 FIG. 1. Phase diagram of the model obtained from the modu-

whereD (k) =D, + w(k) [cf. Eq. (A7)]; here the assump- Iatgd mee_m field theory. The wide solid line indicates the transition
loci (25) in (D,o0?) space forko=1 (k*~1.035),a=1, andc

tion has again been made thatk) is well approximated by ) .
o(K). Note that ifw(k)=0 we recover Eq(18). If we now =3 Inside the ordered.reglon where patterns develop we have
follow the same steps leading to the conditi#5) which indicated sgme contour lines labeled by the v_alue of the _orc_ie_r pa-
marks the boundary of pattern formation, we find that therameters_(k ) _(see text Note that as the couplmg goes to infinity,
e . . . the transition line tends to the value of the noise intensity where the
only modlflcatlor_w is that the very firdd, in the numerator is zero-dimensional system undergoes a noise-induced transitfon,
now replaced wittD¢¢¢(k). The other occurrences &f; are  _ /3’
not affected becaud®, anda are each shifted in such a way
D e e Bracr 2l (romogencousto a convectve regmarabike paters
intens’ity has to bgreaterfor otherk. In other words, while tha.lt we expgct to.obtam her_e_. Using our self—cons[sten.t S0
N ' lution then gives, in the modified mean-field approximation,
modes other than those of magnitukie may become un- the appropriately normalized relation
stable, they first do so at higher values of the noise intensity.
Conversely, for a given noise intensity, the coupling must be 5
stronger to produce an instability of other wave vectors. S(k*) =n(k*) A(k*). (28)
Thus, as the noise intensity is increased from zero for a given
coupling, or the coupling is increased from zero for a givenin Fig. 1, we also present several contour lines indicating the
noise intensity beyondg, the first and hence strongest in- value of S(k*). Note that for a given value of the coupling
stability occurs ak*. D, as noise intensity increases, the order param@fkt)
Figure 1 shows the phase diagram of the model in thealso increases, that is, the stronger the noise, the larger is the
space ¢2,D) obtained from the numerical solution of Eq. amplitude of structures associated with wave vector magni-
(25) in two dimensions withAx=1, a=1, c=3, andk, tudek*. Note also that for sufficiently large noise intensity,
=1, which leads tk* ~1.035. Note that a goes to in- for a given value ofr? there is a nonmonotonic behavior of
finity, the transition line moves to the value of the noiseS(k*) as a function of the coupling strength, indicating that
intensity where the zero-dimensional stationary probabilitythere exists a value of the coupling for which the structures
density becomes bimodak?=1/3. associated witk* exhibit maximum coherence. At the same
Since Eq.(1) satisfies the inversion symmetgy— — ¢,  time, the possible instability of other modes nédr may
roll-shaped patterns are like[\L5]. In order to characterize affect the actual physical appearance of the system, so that
the structure that develops, we use as an order parameter ttieese effects may not be visually unequivocal.

total power spectrum at the most unstable modes, Finally, we note that it is common in pattern formation
discussions to use the so-calliaix of convective heat

S(k*)=2 o d i 27) .
{k*3 ~~
~ I== 2 ¢t=2 b« (29
where, as beforep, stands for the Fourier transform of the N™ k

field ¢, and the sum is over all modes of magnitude This
parameter characterizes the transition from a laminar regimas an order parameter. If our ansatz state were exact, then in
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FIG. 2. Order parameter as a function of the noise intensity
obtained from numerical simulatiosquaresfor a=1, c=3, D
=5, andky=1. The error bars are indicated. The dashed line indi-
cates the linear |nterpolat|on of the numerical data used to locate the
transition point, (ro 0.5+0.1. The points labeled (0?=0.1), B
(02=2), andC (¢®=5) correspond to the spatial structures shown
in Fig. 3. Inset: mean-field result, with transition point af
=0.34955-105.

the patterned state the two would be identichk S(k*).
Differences point to the presence of other unstable modes.

IV. NUMERICAL SIMULATIONS

In order to check the analytical predictions of the modi-
fied field theory, we perform numerical simulations of Eg.
(1) on a two-dimensional square lattice of*684 cells and
apply Dirichlet-Neumann boundary conditions commonly
used in studies of fluids, namely, the field and the normal
component of the gradient are zero at the boundaries. The
relevant parameters have the following values in our simula-
tions: mesh sizeAx=1 that gives the system length scale
L=NAx=64, time stepAt=0.001, ko=1, which leads to
k*~1.035 and araspect ratioA =k*L/27~10. The other
parameters of the model are again takermasl andc=3.
Using these values, the onset of bistability of the stationary

one-site potential occurs atz_alc 1/3. We expect the FIG. 3. Density plots of the stationary field associated with the
transmon to pattern formatlon to occur for noise mtensmespomts A (first pane), B (second, andC (third) of Fig. 2. Note that
near o if the coupling is sufficiently strong. According to s predicted, for a constant value of the coupling, a pattern develops
the mean field phase diagram Fig. =5 is sufficiently  as the intensity of the noise increases.
large. We use this value of the coupling in subsequent calcu-
lations and figures. Although the initial conditions do not . i
matter for the final outcome, the outcome is reached mor ad to a critical valuerg—o 5£0.1. The mean field result,
quickly if we start from a targetlike pattern of rings of width also shown in the figure, pred|cts the ordering transition to
K*. We have ascertained that other initial conditions, for ex-0ccur atog=0.34955-10"° and also captures the linear
ample, a random initial condition, reach the stationary statéranscritical behavior o(k*) with o2, but predicts a slower
albeit in a longer time. growth of the order parameter Wlth noise intensity than the
We have numerically computed the order parameter fonumerical simulations. Nevertheless, the mean-field theory
several noise intensities, and the results are shown in Fig. 2learly captures the full qualitative behavior of the system,
The order parameter is very small for low noise intensitiesespecially near the transition point.
until the critical noise intensity is reached, after which the We have also computed the flux according to &9) for
order parameter grows linearly with®. Our simulations all the cases for which we have presented the order param-
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3 T T

S(k*)

FIG. 4. Order parameter as a function of the coupling strength
obtained from numerical simulatiorfsquaresfor a=1, c=3, ¢
=6, andky=1. The error bars are indicated; the dashed line is a
guide for the eye. The points labeldd D =0, uncoupled system
B (D=14), andC (D=60) correspond to the spatial structures
shown in Fig. 5. Inset: mean-field result.

eter. We find that both predict essentially the same critical
noise value for the appearance of patterns, and that for our
simulation parameters, the flux is fairly consistently twice as
large as the order paramet@ecause of the contributions of
other modes to the formerThis consistency would indicate
that even well beyond the transition point, the most unstable

modes dominate the flux. U }
The spatial pattern that emerges @&sincreases is illus-

trated in Fig. 3 using density plots of the stationary value of -

the field for the noise intensities labeléd B, andC in Fig. ‘

2: 054=0.1 (weak noise, no patteyno3=2 (rolls are vis-

ible), and 0(2;=5 (strong noise, distinctive pattern

Q.

In order to ascertain the nonmonotonic behavior of the
order parameter with coupling strength at a given noise in-
tensity, in Fig. 4 we present the results for a fixed noise
intensity o>=6. Simulations are indicated by squares, and |
the inset shows the results predicted by the theory. While q ' /
there are again quantitative differences, the qualitative agree- L4
ment is evident: both curves show a clear nonmonotonic be-
havior. The density plots of the field associated with points G, 5. Density plots of the stationary field associated with the
A, B, andCin F|g 5 confirm this behavior. Of course even as pointsA (first paﬂe]7 B (Se(_‘,oﬂ(:ﬂ7 andC (th"'d) of F|g 4. Note that'
the amplitudes of wave vectors of magnitudeare decreas- as predicted, for a constant value of the noise, a pattern develops as
ing, the amplitudes of other nearby wave vectors may behe coupling increases but then becomes less distinct as the cou-
growing. Therefore, while the lightening of patte@hon the  pling increases further.
gray scale reflects the decrease in the order parameter, a vi-
sual perception of some loss of distinctness could be due tgh
an admixture of other wave vectors.

»

ort-time instability is required to generate these spatial
structures. As a consequence, this transition is independent
of the noise interpretation, as has been shown for noise-

induced phase transitioj8]. For example, for the itdn-

We have shown by means of a modulated mean-field apierpretation we have checked numerically that this model
proximation and numerical simulations that the mechanisnexhibits the same noise-induced patterns, but at a lower criti-
for noise-induced phase transitions introduced by #isan cal noise intensity. Furthermore, no reentrance phenomenon
et al. [14] can be extended to pattern formation phenomenaoccurs as the fluctuations grow in intensity. Indeed, in our
In contrast with previous work on noise-induced patterns, nsystem, stronger noise leads to increasingly ordered struc-

V. CONCLUSIONS
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tures. The mean-field theory has allowed us to characterize d 9
the model by computing its phase diagram. We have also E cos?‘(Ax7> b,
performed numerical simulations that confirm the qualitative

validity of the theoretical analysis. We find that as the inten- 1

sity of the fluctuations increases, a rotationally symmetric =5 L0+t AXXy, . Xy Xy)
roll-shaped pattern appears. The pattern is characterized by

the most unstable modes of the system, those with wave T (X1 = AX,Xp, oo Xjy o Xg)H o
vector of a magnitudé&=k* that is explicitly predicted by

the mean field analysis. Both the theoretical and numerical FEXiXp, L X HAX, LX)

analyses show that as the coupling between sites goes to FP(Xg Xay o Xj—AX, o Xg)
infinity, the transition to pattern formation occurs at the same

point where the zero-dimensional system presents a noise- tdXpXa, o X, o XgTAX)

induced transition. We have also shown that for sufficiently T X Xar o Xy o Xg—AX)]. (A3)

strong noise intensity, the order parameter for the system is

nonmonotonic as a function of the coupling strength. Thus, . S . .
for sufficiently strong noise, there exists an optimal value ofBY using Eq.(A1) in this last equation, we obtain
the coupling such that the patterns of characteristic size
27/k* are maximally coherent. d J d
> cos)‘(Ax—) b=, A(k*)>, cogk;AX).
i=1 &Xi {k*} i=1
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APPENDIX: IMPLEMENTATION OF THE MODIFIED
MEAN-FIELD THEORY

cos X—— == Ccos X| —+ —
i=1 X 2 ij=1 X (9Xj

We begin by exhibiting in some detail the dependences

associated with the ansatz figlt¥) and the action of on it. P P
For example, for an’ that is m lattice sites away fromr +cosr{Ax<a—— —)H (AB)
=(X1,Xz, ... Xg) in the directionj, the ansatz reads i OX]

Notice that for thed cases wheré=j, the second term on
_ — * _ the right hand side leaves the field at the original sit€he
S EmAX, ’Xd)_{%:} Ak cogmaxk). field at the original site is not represented by the ansatz as-
(A1)  sumption, and therefore we must subtract thé&spurious”
terms produced by the ansatz state and étiches the field
¢, . This procedure leads to
For anr’ that is in the immediate positive diagonal location
away fromr we have

d(X1,X5, ..

2

‘ J d
[;1 cosf(Ax—) b= et 2 AKF)

DX+ AX, X+ AX, ... Xj+AX, ... Xg+ AX) d 2 4
X coskAx)) - =|.
= AK*)cog Ax(Ky+ kot - +kg)].  (A2) 2‘1 ' 2
{k*} (A6)

Next, to apply the discrete versiorfl0) of L we  Note that we have taken advantage of the directional insen-
must elucidate the effect of the operatorssitivity of k*.

[Ei‘L1sinr?((Ax/2)((?/axi))]“ on the field ¢, for n=1,2. Use of Egs.(A4) and (A6) in Eq. (10) then leads to the
With n=1, we use the relation 2 sifly/2)=[cosh§)—1]  following approximation for the term containing the Swift-
and note that Hohenberg coupling operator:
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themselves form a discrete set, with each component sepa-

~C¢r=D1< > AR = |+ 2 AK*)w(k*) rated from the next one by an intervaAk=27/NAx. One
K} (K way to count the number of modegk*) in the sum is to
construct a ring of radius miki [which we shall simply call
= D1< > A(k*)— ¢,), (A7)  k* following the discussion surrounding Eq42) and(13)]

{k*} of thicknessAk=2#/NAXx, and to consider all the modes

that lie in this ring. We can then estimate this number by
calculating the number of cells of volume #2NAx)9 in the
ring:

where the last term in the first line vanishes becaun@e*)
=0, and where

2d 2+ 2d
Axz 0 Ax?

Finally, since the summand in EGA7) is independent of the  Although variations in the particular way of counting are
direction of thek*, the sums simply give the number of possible, for sufficiently large\ the differences are small.

terms in the suntor the appropriate integral fortimes the  Thus, we finally arrive at the mean-field approximation
summand. Simulations always involvéinite system ofN¢

sites i.e., of volume NAx)Y, so that the allowed modes Ld=Dq[n(k*)AK*)— ¢,]. (A9)

d ,ﬂ_dIZ

D]_:D -
T(d2+1)

Nk*>dl

| n(k™)= 2

(A8)
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